Apabila fenomena fisik yang dibuat model matematikanya adalah fenomena kontinyu (jadi mengandung unsur-unsur tak terhingga, misalnya fenomena cahaya yang merupakan bentuk tenaga dengan satuan terkecil disebut foton), model matematika yang dihasilkan adalah model pendekatan.
Suatu model matematika sebagai pendekatan terhadap suatu fenomena (alami atau buatan) hanya mencakup sebanyak hingga pengamatan atau hanya mencakup daerah yang terbatas dari fenomena tersebut (yg tak terbatas) atau hanya bersifat diskrit, walaupun model tersebut masih dianggap sebagai bentuk yang sangat ideal dan yg sangat mendekati fenomena fisik aslinya.
Di masa lalu, cabang-cabang matematika yg mempelajari fenomena fisik kontinyu (gelombang, panas, elastisitas suatu material, gerak cairan, dsb) mendominasi cabang-cabang matematika yang bisa diterapkan pada berbagai fenomena fisik seperti yang biasa dipelajari dalam fisika dan kimia. Sebagai akibatnya, cabang-cabang matematika ini digolongkan dalam kelompok matematika terapan atau matematika fisika.
Tetapi sejak berkembangnya ilmu-ilmu komputer, penerapan cabang-cabang matematika yg mempelajari fenomena-fenomena yang bukan sekedar diskrit, bahkan berhingga, berkembang dengan cepat. Sebagai contoh, konsep lapangan hingga (Inggris: finite fields) yang dulu dianggap sebagai cabang murni dari ilmu aljabar merupakan salah satu tulang punggung penting dalam coding theory.
Demikian pula, teori ukuran (Inggris: measure theory) semakin banyak penerapannya, khususnya dalam teori fraktal dan kaitannya dengan teori chaos. Tentu saja para matematikawan masih bisa mempelajari aspek-aspek dari teori fraktal dan chaos tanpa harus mendalami teori ukuran.
Untuk fenomena fisik yang berhingga, model matematikanya (misalnya model dan perumusan matematis untuk sinyal, decoder dan encoder kode Reed-Muller), yang dibuat bukan lagi model pendekatan, tetapi sudah merupakan model eksak.
Pada beberapa cabang-cabang matematika tertentu, istilah 'model matematika' bisa dipersempit dan sebagai akibatnya, definisi atau pengertian (yang khusus) dari kata 'model matematika' dalam suatu cabang matematika bisa berbeda dengan arti kata yang sama di cabang matematika yang lain.
Di bawah ini diberikan gambaran umum satu kelompok model-model matematika dalam suatu cabang matematika yang besar dan luas, walaupun biasanya masih tergolong dalam kelompok matematika terapan.
0 komentar:
Post a Comment